Intrinsic Conductivity in Magnesium−Oxygen Battery Discharge Products: MgO and MgO2

نویسندگان

  • Jeffrey G. Smith
  • Junichi Naruse
  • Hidehiko Hiramatsu
  • Donald J. Siegel
چکیده

Nonaqueous magnesium−oxygen (or “Mg-air”) batteries are attractive next generation energy storage devices due to their high theoretical energy densities, projected low cost, and potential for rechargeability. Prior experiments identified magnesium oxide, MgO, and magnesium peroxide, MgO2, as the primary discharge products in a Mg/O2 cell. Charge transport within these nominally insulating compounds is expected to limit battery performance; nevertheless, these transport mechanisms either are incompletely understood (in MgO2) or remain a matter of debate (in MgO). The present study characterizes the equilibrium conductivity associated with intrinsic (point) defects within both compounds using first-principles calculations. For MgO, negative Mg vacancies and hole polaronsthe latter localized on oxygen anionswere identified as the dominant charge carriers. However, the large formation energies associated with these carriers suggest low equilibrium concentrations. A large asymmetry in the carrier mobility is predicted: hole polarons are highly mobile at room temperature, while Mg vacancies are essentially immobile. Accounting for nonequilibrium effects such as frozen-in defects, the calculated conductivity data for MgO is shown to be in remarkable agreement with the three “Arrhenius branches” observed in experiments, thus clarifying the long-debated transport mechanisms within these regimes. In the case of MgO2, electronic charge carriers alone electron and hole polaronsare the most prevalent. Similar to MgO, the equilibrium concentration of carriers in MgO2 is low, and moderate-to-poor mobility further limits conductivity. If equilibrium behavior is realized, then we conclude that (i) sluggish charge transport in MgO or MgO2 will limit battery performance when these compounds cover the cathode support and (ii) what little conductivity exists in these phases is primarily electronic in nature (i.e., polaron hopping). Artificially increasing the carrier concentration via monovalent substitutions is suggested as a strategy for overcoming transport limitations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Limiting Potentials in Mg/O2 Batteries

A rechargeable battery based on a multivalent Mg/ O2 couple is an attractive chemistry due to its high theoretical energy density and potential for low cost. Nevertheless, metal-air batteries based on alkaline earth anodes have received limited attention and generally exhibit modest performance. In addition, many fundamental aspects of this system remain poorly understood, such as the reaction ...

متن کامل

Stable magnesium peroxide at high pressure.

Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth's lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffr...

متن کامل

Novel stable compounds in the Mg-O system under high pressure.

Using ab initio evolutionary simulations, we explore the entire range of possible stoichiometries for the Mg-O system at pressures of up to 850 GPa. In addition to MgO, our calculations find that two extraordinary compounds MgO2 and Mg3O2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Detailed chemical bonding analysis shows large charge transfer in all magnesium oxides. ...

متن کامل

Oxygen enrichment with magnesium peroxide for minimizing hypoxic stress of flooded corn

Flooding/waterlogging is a major factor responsible for hypoxic stress in agriculture. The aim of this study was to develop an effective oxygen buffer with magnesium peroxide (MgO2) to generate hydrogen peroxide (H2O2) and release bioavailable oxygen. MgO2 provided a relatively stable level (approx. 300 mM) of bioavailable oxygen. The oxygen-buffer system is adjustable and controllable by addin...

متن کامل

Studies on the Effect of Nano-Sized MgO in Magnesium-Ion Conducting Gel Polymer Electrolyte for Rechargeable Magnesium Batteries

Magnesium-ion conducting gel polymer electrolytes (GPEs) with different contents of nano-sized MgO have been prepared and investigated by various electrical and electrochemical techniques. The Mg2+ ion conduction in GPEs was confirmed from cyclic voltammetry and impedance analysis. It was found that doping appropriate nano-sized MgO in the GPE can induce significant improvements in both the ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017